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We present a simple and pedagogical derivation of the spin current as the linear re-
sponse to an external electric field for both Rashba and Luttinger spin–orbital coupling
Hamiltonians. Except for the adiabatic approximation, our derivation is exact to the
linear order of the electric field for both models. The spin current is a direct result of
the difference in occupation levels between different bands. Moreover, we show a general
topological spin current can be defined for a broad class of spin–orbit coupling systems.
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1. Introduction

Spintronics aims to manipulate spins of particles. As such, an essential step in the

field is the generation of a reliable spin current. The injection of spin polarized elec-

tron current from a ferromangetic metal is not favorable because polarization is lost

at the interface due to the conductance mismatch.1,2 Injections from ferromagnetic

semiconductors into nonmagnetic semiconductors have been successfully developed

in recent several years.3–5 The theory of spin transport in the fore-mentioned cases

depends on the detailed mechanism of spin relaxation, where spin transport gener-

ally is a dissipative process.

Recently, Murakami, Nagaosa and Zhang6 have discovered a dissipationless and

topological spin Hall current in the hole doped semiconductors with strong spin–

orbit coupling. These authors studied the effective Luttinger Hamiltonian12

HL =
1

2m

[(

γ1 +
5

2
γ2

)

P 2 − 2γ2(P · S)2
]

(1)

which describes conventional semiconductors such as Si, Ge, GaAs and InSb. The

geometrical structure of the effect is such that for an electric field applied on the z
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direction, a y-polarized spin current will flow in the x direction. The electric field

induced spin current can be summarized by the following formula

J i
j = σsεijkEk , (2)

where εijk is the antisymmetric tensor. Unlike the ordinary Ohm’s law, this equation

has the remarkable property of time reversal symmetry.6,7 This effect also has a deep

topological origin,6,7 related to the topological structure of the four-dimensional

quantum Hall effect.13

In an independent work, Sinova et al. also suggested8 that the dissipationless, or

the intrinsci spin current can exist in the two-dimensional Rashba system, described

by the Hamiltonian11,10

HR =
P 2

2m
+ γ(PxSy − PySx) . (3)

In this case, the spin current is polarized in the direction perpendicular to the two-

dimensional plane and flowing in a planar direction perpendicular to the direction

of the charge current. Surprisingly, the spin conductance in these systems turns out

to be independent of the spin orbit coupling and given by:

σs =
e

8π
. (4)

In both of the above models, the intrinsic spin current is induced by an external

electric field. The authors of Refs. 6 and 8 have argued that the spin current is

dissipationless because the spin conductance is invariant under time-reversal oper-

ations. However, the approaches taken by the authors of Refs. 6 and 8 are markedly

different. In the first two-dimensional model,8 a semi-classical approach is used to

derive the spin current, while in the second three-dimensional model,6 the spin cur-

rent is derived as a topological effect in momentum space. It therefore appears that

the physics of the spin current in these two models is different. In fact, in the first

model, there is no known topological structure. However, from a purely theoretical

point of view, we should be able to derive the results and understand the physics

in one unified approach.

2. Derivation of Spin Current for the Rashba and Luttinger

Models

The aim of this article is to present a simple, pedagogical and unified derivation of

the spin current for both models. The derivation of Murakami et al.
6,7 emphasizes

on the momentum space topology which requires some advanced mathematical

knowledge. The semi-classical derivations presented in Refs. 6, 8 and 9 may not

be familiar to general readers. In view of the importance of the effect, we feel that

the general reader could benefit from a simple derivation based on the standard

time dependent perturbation theory within single particle quantum mechanics. As

in Refs. 6 and 8, we work within the adiabatic approximation. Since there is no

interaction between particles, the result derived here is exact only as far as the
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linear response to the external electric field in the adiabatic limit is concerned.

Moreover, general conclusions about the spin current can be manifestly drawn in

this approach. Following the common definition of the spin current, we show that

the spin current is always a direct result of the difference in occupation levels

between different bands in the models. Part of the spin current can be interpreted

as topological spin current. In fact, we present an analysis and derivation of the

topological spin current for a broad class of spin–orbital coupling models.

In the following, we first calculate the spin current in the Rashba and Luttinger

models and then discuss the topological part of the spin current. For the Luttinger

Hamiltonian, we show that the expectation value for the spin current in the heavy

hole and light hole states differs by exactly a minus sign. This result leads to the

conclusion that the contributions to the spin current from the heavy hole and light

hole bands should be exactly opposite and differ by the Fermi velocities of two

bands. The total spin current gives a quantum correction to the semiclassical result

of Ref. 6. The nature of the quantum correction can be manifestly understood in

our calculation, and has also been discussed in Ref. 7. For the Rashba Hamiltonian,

our approach gives the same spin current as the Ref. 8 if the same definition of the

spin current is taken.

In our calculation, the spin current is defined by the velocity times the spin,

which is a rank two tensor. However, the velocity operator in general does not

commute with the spin operator in a model with spin–orbit coupling. In order to

define the spin current tensor as a Hermitian operator, we have to symmetrize it:

Jj
i =

1

2

(

Si

∂H

∂Pj

+
∂H

∂Pj

Si

)

. (5)

2.1. Adiabatic approximation and Kubo formula

Let us consider a general spin–orbit coupling model described by the many-body

Hamiltonian H(P, S). In the presence of a constant external electric field, we choose

the vector potential A = −Et. The total Hamiltonian becomes time dependent,

H(t) = H(P − eEt, S). Let |G, t〉 be an instantaneous ground state eigenstate of

the time-dependent Hamiltonian,

H(t)|G, t〉 = EG(t)|G, t〉 . (6)

The many-body ground state wavefunction ΨG(t) of the Hamiltonian satisfies the

Schrodinger equation,

i
d

dt
ΨG(t) = H(t)ΨG(t) . (7)

By first-order time-dependent perturbation theory, we have
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|ΨG(t)〉 = exp

{

−i

∫ t

0

dt′EG(t′)

}

×
{

|G, t〉 + i
∑

n

|n, t〉〈n, t| ∂
∂t
|G, t〉

En(t) − EG(t)
(1 − ei(En(t)−EG(t))t)

}

, (8)

where |n, t〉 are the instantaneous excited eigenstates.

The second term in the RHS of the expression above contains a fast oscillation

term which averages to zero, and which we neglect below. For the non-interacting

Fermi system, the above expression can be simplified into summation over all instan-

taneous single particle eigenstates. Then for an arbitrary operator O, the difference

of expectation values between the perturbed and unperturbed states is given in

Ref. 14

〈ΨG, t|Ô|ΨG, t〉

= i
∑

ελ,P <Ef <ελ′,P

×
〈λ, P (t)|Ô|λ′, P (t)〉〈λ′, P (t)| ∂

∂t |λ, P (t)〉 + 〈λ, P (t)| ∂
∂t |λ

′, P (t)〉〈λ′, P (t)|Ô|λ, P (t)〉

ελ′,P (t) − ελ,P (t)〉
,

(9)

where |λ, P (t)〉 is the instantaneous eigenstate with polarization λ of the single

particle Hamiltonian.

The entire calculation of the spin current that follows relies on the above Kubo

formula. However, when the Hamiltonian has degenerate states, we use the following

convention: if a set of states, {|λ, P (t)〉}, are degenerate in energy, we can always

choose a complete orthogonal basis of states in the set, {|α, P (t)〉}, such that, for

any two new different orthogonal states |α1, P (t)〉 and |α2, P (t)〉, we have,

〈α1, P (t)| ∂

∂t
|α2, P (t)〉 = 0 . (10)

In this case, the summation index in the formula does not include the degenerate

states and therefore, the formula is well defined.

2.2. Spin current in the Rashba spin orbital coupling model

Let us now consider the particular case of the Rashba Hamiltonian in an external

electric field. The time dependent Rashba Hamiltonian is given by

HR(t) =
P (t)2

2m
+ γ(Px(t)Sy − Py(t)Sx) . (11)

For a given P (t), the instantaneous eigenstates are given by

|λ, P (t)〉 = UR|λ〉 , (12)
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with

ε(P (t)) =
P 2(t)

2m
+ γλ|P (t)| ,

UR = e−iφ(t)Sz ,

φ(t) = tan−1 Py(t)

Px(t)

the azimuthal angle, and |λ〉 is the eigenstate of Sy with Sy|λ〉 = λ|λ〉. Therefore,

∂

∂t
|λ, P (t)〉 = −i

dφ(t)

dt
Sz |λ, P (t)〉 , (13)

with

dφ(t)

dt
= eεijEi

Pj(t)

P 2(t)
,

where εij is rank-2 antisymmetric tensor. By applying the Kubo formula, for any

Hermitian operator Ô, we obtain

〈λ, P (t)|Ô|λ, P (t)〉 = 2eεijEi

Pj(t)

|P (t)|3

×
∑

λ′ 6=λ

〈λ′, P (t)|Sz |λ, P (t)〉Re(〈λ, P (t)|Ô|λ′, P (t)〉)
γ(λ′ − λ)

. (14)

For the spin one half particles, the above formula is simplified to
〈

±1

2
, P (t)|O| ± 1

2
, P (t)

〉

= ±CoεijEi

Pj(t)

P (t)3
(15)

where

Co =
e

γ
Re

〈

1

2

∣

∣

∣

∣

Ô(t)

∣

∣

∣

∣

−1

2

〉

.

The spin current operator when the spin is polarized in the perpendicular direction

to the xy plane is given by

Jz
i =

Pi

m
Sz +

γ

2
εij(SzSj + SjSz) . (16)

It is easy to show that

Re

〈

1

2

∣

∣

∣

∣

Ĵi(t)

∣

∣

∣

∣

−1

2

〉

=
Pi

m

〈

1

2

∣

∣

∣

∣

Sz

∣

∣

∣

∣

−1

2

〉

=
Pi

2m
.

Considering the whole Fermi surface, we can easily calculate the total spin current.

Let us take the electric field is in x direction and consider the current Jy.

Jy =
e

8πγm
∆Pf (17)

where the ∆Pf is the difference of the fermi velocity for the two bands. In this

model, ∆Pf = mλ. This yields the result of the Eq. (4).
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2.3. Spin current in the Luttinger model

We now turn to the discussion of the effective Luttinger Hamiltonian. In the pres-

ence of the external electric field, the time dependent effective Luttinger Hamilto-

nian is

HL(t) =
1

2m

[(

γ1 +
5

2
γ2

)

(P (t))2 + 2γ2(P (t) · S)2
]

. (18)

For a given P (t), the Hamiltonian has four instantaneous eigenstates,

H(t)|P (t), λ〉 = ελ(P (t))|P (t), λ〉 ,

P (t) · S
|P (t)| |P (t), λ〉 = λ|P (t), λ〉 ,

(19)

where

ελ(P (t)) =
P 2(t)

2m

(

γ1 +

(

5

2
− 2λ2

)

γ2

)

.

For λ = ± 3
2 and λ = ± 1

2 , they are referred to as the heavy hole band and light hole

band respectively. The eigenstates can be explicitly written as

|P (t), λ〉 = UL|λ〉 , UL = e−iφ(t)Sze−iθ(t)Sy |λ〉 , (20)

where tan(φ(t)) = Py(t)/Px(t), cos(θ(t)) = Pz(t)/|P (t)| and Sz|λ〉 = λ|λ〉.
Since the eigenstates are degenerate, we have to choose an orthogonal basis and

satisfy the Eq. (10) in order to use the Kubo formula. Without loss of generality,

we choose the electric field in the z direction. In this case, φ is time-independent.

Therefore,

〈P (t), λ′| ∂

∂t
|P (t), λ〉 − i

dθ(t)

dt
〈λ′|Sy|λ〉 . (21)

From this equation, we obtain that for the states with the helicity equal to ± 3
2 , the

matrix element 〈P (t),− 3
2 |∂t|P (t), 3

2 〉 vanishes. The only states for which we have

to find an orthogonal base are in the helicity ± 1
2 . Let us define

|P (t), +〉 =

(

1√
2

∣

∣

∣

∣

P (t),
1

2

〉

+ i

∣

∣

∣

∣

P (t),−1

2

〉)

,

|P (t),−〉 =
1√
2

(∣

∣

∣

∣

P (t),
1

2

〉

− i

∣

∣

∣

∣

P (t),−1

2

〉)

,

(22)

which satisfy 〈P (t), +|∂t|P (t),−〉 = 0.

For an arbitrary operator Ô, let Ô(t) = U+
L ÔUL. Applying the Kubo formula,

we obtain the expectation value for an arbitrary Hermitian operator,

〈Ψ 3

2

(t)|Ô|Ψ 3

2

(t)〉 =

√
3m

2γ2P 2

dθ(t)

dt
Im

(〈

1

2

∣

∣

∣

∣

Ô(t)

∣

∣

∣

∣

3

2

〉)

(23)
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and

〈Ψ+(t)|Ô|Ψ+(t)〉 =

√
3m

4γ2P 2

dθ(t)

dt

{

Im

(〈

3

2

∣

∣

∣Ô(t)
∣

∣

∣

1

2

〉

+

〈

−1

2

∣

∣

∣Ô(t)
∣

∣

∣ − 3

2

〉)

+ Re

(〈

−1

2

∣

∣

∣Ô(t)
∣

∣

∣

3

2

〉

+

〈

1

2

∣

∣

∣Ô(t)
∣

∣

∣ − 3

2

〉)

}

. (24)

The spin current operator where the spin is polarized in y direction and flows in x

direction is given by

Ĵy
x =

γ1 + 5
2γ2

m
PxSy − γ2

2m
[Sy((P · S)Sx + Sx(P · S)) + h.c.] . (25)

The matrix element Im 〈 3
2 |Ĵy

x (t)| 12 〉 is calculated to be

Im

〈

3

2

∣

∣

∣

∣

Ĵy
x (t)

∣

∣

∣

∣

1

2

〉

=

√
3P

2m
sin θ(γ1 cos2 φ + 2γ2 sin2 φ) . (26)

We thus obtain,

〈Ψ 3

2

(t)|Jy
x |Ψ 3

2

(t)〉 = −〈Ψ+(t)|Jy
x |Ψ+(t)〉

=
3e

4γ2P 4
(γ1P

2
x + 2γ2P

2
y )E (27)

where we used dθ(t)/dt = eE sin(θ(t))/|P (t).

For the states |P (t),− 3
2 〉 and |P (t),−〉, the expectation values for spin current

are the same as |P (t), 3
2 〉 and |P (t), +〉 respectively. Therefore the total spin current

by including all the particles in the two bands is given by

Jy
x =

eE(γ1 + 2γ2)

4π2γ2
∆Pf , (28)

where ∆Pf is the Fermi momentum difference between the heavy and light hole

bands. Once again, we show that the spin current comes from the occupation dif-

ference between two bands. The above result has been independently obtained by

Murakami, Nagaosa and Zhang through a slightly different derivation based on

Kubo formula too.7

3. Topological Spin Current and Conclusion

This full quantum mechanical calculation gives a quantum correction to the original

semiclassical result.6 In fact, the difference comes from the definition of spin current

operator. In Ref. 6, an effective Hamiltonian was derived by introducing a monopole

in momentum space. The spin current is thought of as a topological effect of the

monopole. In the heavy hole states, the gauge potential is Abelian while in the light

hole states, the gauge potential is non-Abelian. However, the field strength in both

bands is Abelian. For each helicity states, the field strength is given by

Fij = [Di, Dj ] = λ

(

λ2 − 7

2

)

εijk

Pk

P 3
, (29)
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where

Dj = Ph(l)(U
+
L ∂pj

UL)

(Ph(l) is the projection onto heavy (light) hole bands). This gauge field modifies the

semiclassical equation of motions as

vi,λ = Ẋi,λ =
Pi

mλ

+ FikEk . (30)

In Ref. 6, the spin current is derived by replacing the spin operator by its expectation

value in the helicity states compared to the definition in the Eq. (5). If we use the

same replacement, it is straightforward to show that the spin current from the

perturbation theory is the same as from Ref. 6. Namely, for a given helicity state

|λ, P (t)〉, the expectation value of 〈vi〉λ in the adiabatic approximation from the

perturbation theory is given by
∂Pj

∂t
〈λ|Fij |λ〉.

However, the above calculation does not underline the topological nature. Sev-

eral questions still remain. The first is how the topological spin current can be sepa-

rated from the general spin current formula in the Eq. (5). The second is that since

the calculation is performed on a specific model, it is not clear whether the topo-

logical arguments can be applied to more general cases such as realistic anisotropic,

inversion-symmetry breaking semiconductors. The recent work of Murakami, Na-

gaosa and Zhang7 have answered some of these questions from the Kubo formula

for the isotropic Luttinger Hamiltonian. Here we give an independent argument

based on our formalism.

Let us review Eq. (5) and discuss a general case. Let us assume a general unitary

transformation U which is a function in the momentum space and diagonalizes

a general Hamiltonian H . For any operator O, let O(U) = U+OU . Therefore,

H0 = H(U) is diagonal and

Jj
i (U) =

−i

2
[Si(U)[Xj(U), H0] + [Xj(U), H0]Si(U)] . (31)

Let us write

Si(U) = Sp
i (U) + Sc

i (U) ,

Xj(U) = Xp
j (U) + Xc

j (U) ,

where Op(U) keeps the elements of O(U) which are only between the degenerate

eigenvalues of H(U) for a given operator O; namely, it is the projection onto the

degenerate bands. Oc(U) is the leftover part. Now we can define the total spin

current operator into J j
i (U) = T j

i (U)+Aj
i (U), where the first part T j

i (U) is defined

T j
i (U) =

−i

2
([Sp

i (U)Xj(U) + XjS
p
i (U), H0] + [Si(U)Xp

j (U) + Xp
j Si(U), H0]) (32)

and

Aj
i (U) =

−i

2
[Sc

i (U)[Xc
j (U), H0] + [Xc

j (U), H0]S
c
i (U)] . (33)
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where the relations [Sp
i (U), H0] = 0 and [Xp

j (U), H0] = 0 have been used in the

above equations. It is clear that Aj
i (U) is the band crossing contribution to the

spin current. T j
i (U) can be considered as the topological part of the spin current.

This statement is true for any models with arbitrary number of bands and with

arbitrary degeneracy in each bands caused by spin orbit coupling. The proof is

straightforward from the perturbation theory.

Without loss of generality, we assume that H0 is the diagonal matrix,

H0 =









E1Im1
0 0 · · ·

0 E2Im2
0 · · ·

· · · · · · · · · · · ·









,

where m1, m2, . . . are the number of degeneracies of each of the bands. By a direct

calculation from the Eq. (5), the spin current contribution from T j
i (U) is given by

〈T j
i 〉 = i Tr{Sp

i (U)[Xp
j (U), Xp

k (U)]}∂Pk(t)

∂t
. (34)

The above equation is independent of U for all of unitary matrixes which U+HU =

H0. Therefore, the symmetry group for U is SU(m1)
⊗

SU(m2)
⊗ · · ·. The above

formula is manifestly gauge invariant if we view the symmetry group as a gauge

group in momentum space as described in Ref. 6.

From the above analysis, we see that the topological spin current exists in much

broader spin–orbit coupling systems. However, it requires the degeneracy of the

bands, namely the non-Abelian gauge structure in momentum space. The direct

consequences from this result is that for a realistic anisotropic Luttinger Hamilto-

nian, the topological part of spin current will still exist, and that for the Rashba

Hamiltonian there is no topological part of the spin current since there is only a

U(1) gauge.
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